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1 Introduction

Social scientists, including political scientists, economists, sociologists and anthropologists,

have difficulty understanding the dynamic aspects of institutions. Their major theories stress

stability, treating institutions as fixed game theoretic structures or equilibria (economics and

political science), or as deeply shared common understandings (sociology and anthropology).

Institutional change is usually treated as the product of exogenous forces, leading to serious

theoretical questions about whether institutions have independent causal force, or are instead

mere transmission belts between some external factor and actors’ behavior [Przeworski, 2004].

Efforts to explain partly endogenous change are better at explaining how institutions can

become self-reinforcing or self-undermining than at explaining change as such [Greif and

Laitin, 2004].

This makes it harder for social science to address major puzzles. For example, social

scientists broadly agree that the historical transition from closed and hierarchical societies

to open societies is best understood as a process of dynamic institutional change [North et al.,

2009a, Acemoglu and Robinson, 2013]. The difficulty of applying static understandings of

institutions to dynamic processes has led scholars to casually invoke evolutionary concepts

such as ‘genetic drift’ to explain long term processes of cumulative change [Acemoglu and

Robinson, 2013], but they have not been able to move beyond broad analogy, or to understand

how evolutionary forces might e.g. interact with power relations Levi [2013].

This article addresses this problem by providing a new and comprehensive framework for

understanding institutional change as a dynamic evolutionary process. We treat institutions

as populations of socially transmitted and roughly similar beliefs. Interaction between peo-

ple with diverse viewpoints gives rise to evolutionary ‘noise,’ determining the rate at which

new variant beliefs arise. Whether a belief becomes epidemic, leading to institutional change

depends on network contagion, where variation in the topology of the network (the asym-

metry of degree across nodes) captures the extent of power asymmetry in a given society,

and the number of high degree nodes as a proxy for the extent to which elite actors favor or
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disfavor a particular belief (as beliefs become more objectionable to powerful figures, high

degree nodes are deleted). More generally, processes of network contagion can be treated

as specific forms of ‘large deviation’ processes of change, allowing us to model institutional

change as a stochastic-dynamical evolutionary process.

Our account has clear limitations. It is incapable of modeling ‘mistakes’ or more general

processes of institutional backsliding and degeneration. Like other evolutionary accounts, it

draws a sharp intellectual separation between the processes through which new variations

are generated, and the processes through which they are diffused, while in actuality they

are likely to be commingled. It does not provide a fully predictive account of institutional

change, instead emphasizing that change will involve an irreducible element of stochasticity.

Finally, it is better suited to explaining bottom-up processes of institutional change (in which

variations well up from below and are selected through diffuse social processes), than top-

down processes (in which leaders make the key decisions, and formal processes are crucial).

Even so, it provides a new set of tools that social scientists use to understand institutions.

Most notably, it allows social scientists to compare dynamic processes of institutional change

across different social settings. Societies will produce new possible institutional innovations

(new beliefs) at different rates, depending on their viewpoint diversity (and the extent of

interaction between those with different viewpoints). They will also vary in the rates at

which new beliefs are taken up and become epidemic, and the kinds of beliefs that are taken

up, depending on the extent of social power asymmetries.

To evaluate the plausibility of these claims, we apply these arguments to important recent

social science controversies over institutional change in the Greek city-state system during

the classical and Hellenic eras, comparing Athens and Sparta on the basis of qualitative data

drawn from the historical record. Our approach captures the dynamic aspects of institutional

change, providing a highly plausible explanation of why the two cities experienced such

different broad trajectories of institutional change over the relevant period.
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2 Institutions and Institutional Beliefs

Social scientists from different disciplines and approaches disagree over whether institutions

have force because they simply provide information or shape deeper collective understand-

ings. They broadly agree that institutions are rules that shape people’s behavior because

they instantiate individuals’s beliefs about what other people believe, and how they may be

expected to respond [Knight, 1992, Jepperson, 2002]. Social scientists furthermore usually

presume that these beliefs either are unproblematically shared (so that everyone has the

same beliefs about the institution). This implies that institutions are somehow transmit-

ted unproblematically from individual to individual, a truly heroic assumption, given basic

results from information theory, statistical learning theory, cognitive psychology and other

disciplines.1

Our account, in contrast, models institutional change as a consequence of noisy transmis-

sion. Institutional beliefs - that is, beliefs about what other people believe is the appropriate

rule in a given set of circumstances - may change as a product of communication and obser-

vation, so that new variant beliefs emerge. These variants may, or may not spread, again as

a consequence of processes of social transmission.

This provides the basis of an evolutionary account of institutional change. There is

much confusion within the social sciences about the implications of evolutionary approaches.

Many social scientists are reluctant to acknowledge that evolutionary accounts as such can

explain anything important about human social behavior. The publicity given to a noxious

sub-literature in evolutionary psychology, whose dedication to crafting crude functionalist

accounts of complex human phenomena is matched only by its incompetence at data analysis

[Gelman, 2007], has done much to stroke this hostility. However, an evolutionary theory

does not need to invoke biological adaptations in its explanations of particular phenomena,

or make strong assumptions about some general guiding force [Padgett and Powell, 2012].

1 Knight and North [1997] do note the problem, as do Greif and Laitin [2004] who assume, however, that
individuals will rapidly converge on an excellent approximation of common knowledge.
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All that an evolutionary account requires is that the theory of change invoke and describe

the relationship between mechanisms of transmittable variation and selection.

Transmittable variation, in our account, involves the generation and transmission of new

variant institutional beliefs, which differ markedly in some respect from the existing popu-

lation of beliefs). People learn about institutions through observation and communication.

New institutional beliefs will arise when individuals understand an institutional rule in a

significantly different way to those around them. These beliefs may in turn be transmitted

to others either through communication (when an individual explains her understanding of

an institution to another), or through action (when a person behaves in ways that are at

odds with others’ understanding of a given institution, causing those others observing to

question or re-evaluate their own understanding).

Thus, beliefs must be acquired through ordinary processes of learning, which are limited

by the intrinsic limitations of any learning process, the biology of human memory, and the

specific imperfections of particular forms of observation and communication. Such imper-

fections mean that individual beliefs are never perfectly transmitted, any more than other

mental representations are [Sperber, 1996]. The background level of ‘noise’ in social trans-

mission processes means that there is always some positive probability of new variant beliefs

emerging.

However, the level of ‘noise’ may differ systematically across communities or social set-

tings. A large body of findings across the social sciences suggests that the degree of cognitive

diversity across individuals in a given social setting will have systematic consequences for

the rate at which new variant beliefs will arise. By cognitive diversity, we mean the level of

divergence across the schemas or broad systems of perspectives through which individuals

understand the world around them. Schemas may be shaped by a variety of intrinsic and

extrinsic factors that provide individuals with general toolkits through which to interpret

their surroundings, including, for example, different religions, educational backgrounds, po-

litical philosophies and work experiences. These may in turn shape the particular beliefs
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that individuals have about how a specific rule ought to be interpreted. The greater the

variety of schemas in a given community or society, the greater the cognitive divergence.

Generally, we expect that the more contact there is between cognitively diverse individ-

uals in a given community or society, the greater the likelihood of new institutional beliefs

emerging in that community or society. Such contact will obviously lead to more disagree-

ment about how an institution ought to be interpreted with respect to a given situation,

leading to “mistakes” that may sometimes point in fruitful directions. It may also make it

easier for individuals strategically and deliberately to contest and misinterpret institutions

in ways that favor them [Hall and Thelen, 2009]. Greater cognitive diversity furthermore

makes it more likely that individuals will be able to generate genuinely new insights by

communicating among each other, learning from each others’ point of view, and recombin-

ing the logics of different viewpoints to discover new possibilities [Page, 2007]. These three

mechanisms, which roughly correspond to different major understandings of human commu-

nications across the social sciences (cultural, strategic and deliberative), differ sharply at the

micro-level, but may reinforce each other in creating macro-level outcomes.

Institutional beliefs will be retained when they spread sufficiently widely to become epi-

demic across the population of actors, giving rise to a new institution. This can be understood

as a standard process of social contagion across a social network comprising the individuals

in a given community or society. Individuals will not be able to pass on a new institutional

belief unless they are exposed to it, either through having others communicate the belief to

them, or through observing others behaving in ways that accord with the new belief. They

may then pass a more or less accurate version of this belief on to others with some positive

probability, either through communicating it or behaving in accordance with it. This means

that different network topologies will be associated with different probabilities of a social

contagion spreading. Roughly speaking, the more connections there are, and the higher the

variance there is in degree (so that some nodes in the network have many more connections

than others), the more likely it is that a given contagion will spread. Power relations are
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reflected by differences in ‘degree,’ or the number of links to a particular node, and have

stark consequences for social contagion. Human societies tend to be characterized by social

networks with high variance of degree, and also to involve assortative attachment between

individuals of high degree [Newman and Park, 2003]. The higher the variance of degree, the

more influential the highly linked nodes are in determining which contagions spread, and

which die out.

This provides a straightforward way of understanding which institutional beliefs are likely

to spread so that they become epidemic across the entire community, leading to institutional

change, and which not. Variance in degree provides a rough index of the level of power

asymmetry in a given society: the more variance there is, the more readily powerful actors

(represented by nodes with high degree) can influence the process of institutional change.

Institutional beliefs that are inimical to high degree nodes (they may not be in those actors’

material interest, or they may seem inappropriate to those actors, or both) will be unlikely

to be passed on by them, whether because they are blocked by implied or actual physical

coercion, or by control over the legitimate channels of communication, or some combination.

The more unequal power relations are in a given society, the less likely it is that institutional

beliefs that are inimical to highly powerful actors will become endemic across the entire

network. This is not to say that generally beneficial or attractive institutional beliefs cannot

spread in societies with power asymmetries. However, they will typically only spread where

they are not only broadly beneficial, but specifically congenial to powerful actors.2

Thus, an institution exists when the individual members of a community have institu-

tional beliefs that are similar enough that they are roughly self-reproducing and mutually

reinforcing over most situations most of the time. However, because social transmission

processes are imperfect, and because people are likely (thanks to innate cognitive differ-

ences) to interpret institutions in somewhat different ways, institutional beliefs may change

2 Our argument here is similar to Rodrik [2014, 197]’s observation that “Just as we think of technological
ideas as those that relax resource constraints, we can think of political ideas as those ideas that relax political
constraints, enabling those in power to make themselves (and possibly the rest of society) better off without
undermining their political power.”
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in the process of transmission significantly enough so as to give rise to genuinely new be-

liefs. New beliefs have some positive chance of being taken up by others and transmitted

(also imperfectly) across the relevant community. When a new and significantly different

set of roughly congruent beliefs has spread widely enough to become endemic across the

community, replacing the previous set, we may say that institutional change has occurred.

We have moved from one set of roughly similar institutional beliefs to another. This process

of change may be understood in evolutionary terms. New variant beliefs arise as a result of

imperfect transmission, which is more likely to happen when there are high levels of con-

tact between cognitively diverse individuals. These beliefs may be retained if they spread

sufficiently widely to give rise to a new institution, but, depending on the level of power

asymmetry, may be selected out if they are disfavored by powerful individuals.

3 Modeling Institutional Change

By decomposing institutions into populations of approximately shared beliefs across a given

community of actors, and examining how variant beliefs are generated and selectively re-

tained, we can begin to address Knight and North [1997, p. 214]’s challenge to model pro-

cesses of institutional change that explain “how and why [human beings] develop theories in

the face of pure uncertainty, [and] what makes those theories spread among a population and

die out” Specifically, we can model institutional change as a specific application of a more

general class of ‘large deviations” or “stochastic-dynamical” approaches to understanding

evolutionary processes. In stochastic-dynamical accounts, a noisy process draws specific new

variations from an underlying possibility space. These variations may then spread across

the population. Some variations may become firmly established in the population through

“evolutionary drift,” even though they do not confer any fitness advantages over existing

traits. The common element of results across a very wide range of these models is that evo-

lutionary processes obey large deviations principles, under which the probability of a certain
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historical trajectory of strategies in the population is roughly exponential. These models

of evolutionary processes identify three major factors — the rate at which new variations

arise, the ‘size’ of the population across which a new variation has to spread, and the relative

“difficulty” of potential trajectories to higher fitness states — as affecting the rate at which

new evolutionary “fitness states” or “equilibria” emerge.

These models have not been typically applied to social or institutional evolution, because

it has not been clear how well the mathematics travel. As we show in Appendices I and

II, it is reasonable to characterize institutions as stable states, and the social contagion

of institutional beliefs as a large deviations process, allowing us to apply this approach

to understand how institutions evolve. First, we can capture how the “noise” processes

described previously, as well as the “size” of the relevant population, affect the rate at which

new variations are generated. We predict that societies with greater cognitive heterogeneity

will have greater noise. Social structures may further affect the level of noise by affecting

the likelihood that individuals with different cognitive approaches will come into contact

with each other, thus changing the relevant “size” of the population that the belief has to

spread across. Societies where individuals have heterogenous understandings of the world,

but only rarely come into contact with each other, are obviously less likely to give rise to new

beliefs than societies where cognitively diverse individuals are in frequent contact. Together,

the level of heterogeneity and the extent of social contact among heterogenous individuals

determine the speed with which evolutionary processes can explore the underlying possibility

space by generating new variations. The higher the noise, the more quickly evolutionary

processes can explore the relevant space.

Less abstractly, different environments will be more or less conducive to new institutional

beliefs emerging. Social environments where there is plentiful institutional interaction and

exchange between individuals with different cognitive maps of the world will have higher rates

of variation (and hence, rates of possible institutional change) than social contexts where

there is little such exchange. Contact between people with different skill sets and social
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backgrounds may lead to the accidental or deliberate discovery of new institutional forms

[Padgett and McLean, 2006]. Contact between diverse individuals will be more common in

societies with internally heterogenous populations, engaged in different forms of economic

and social activity with implications for their understanding of the world. It may also

be produced by greater interchange with other societies, whether through temporary or

permanent flows of people or trade.3.

As already noted, power asymmetries, which can be represented as the variance of degree

in a given social network mean that new institutional beliefs do not have an equal chance of

being selected as the basis of new institutions and thus retained. Specifically, power asymme-

tries combined with different attitudes among powerful actors towards specific institutional

beliefs may mean that beliefs that sit poorly with power elites are less likely to spread con-

tagiously across the network. We capture this by assuming that if nodes of high degree

belong disproportionately to a particular class which is inimical to a new belief, and so resist

its spread, the new belief is being propagated over a network from which the high-degree

nodes have been preferentially removed [Albert et al., 2000, Callaway et al., 2000]. Such

“targeted” removal lowers the average degree of nodes on the effective network, as well as

lowering the variance of degree; both of these make it harder for the innovation to spread, by

raising the epidemic threshold. Preferentially blocking the high-degree nodes also changes

the effective network for the diffusing innovation by increasing the average distance between

nodes, especially between nodes which belong to highly transitive clusters. This is because

the high-degree nodes are unusually apt to be long-range bridging ties (at least in many

topologies, including the topologies most characteristic of human social ties), and in fact

removing a fairly small fraction of the highest-degree nodes can effectively fragment the net-

work into disconnected components. The implication of all this is when a new institutional

3See e.g. Mill [1909], “the economical advantages of commerce are surpassed in importance by those of
its effects which are intellectual and moral. It is hardly possible to overrate the value, in the present low
state of human improvement, of placing human beings in contact with persons dissimilar to themselves, and
with modes of thought and action unlike those with which they are familiar. Commerce is now what war
once was, the principal source of this contact.”
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belief is resisted by a group of actors of high degree, even without concerted collective action

on their part, their individual resistance can block the belief from spreading. On the one

hand, this can capture variation in the resistance of powerful actors to specific institutional

beliefs. By taking a given topology and then preferentially removing high degree nodes from

it, we can see how variation in the resistance of highly connected actors affects the likelihood

that a new belief will become epidemic across the entire network leading to a new institution.

On the other, we can compare the robustness of different network topologies (specifically,

network topologies with higher or lower variance in degree) to node removal, and hence cap-

ture how the interaction between different levels of inequality of influence between elites and

non-elites, and different levels of elite resistance shapes processes of institutional change.

Applying a stochastic-dynamical evolutionary approach to the contagion of institutional

beliefs provides two major advantages over existing understandings of institutional change.

First, it allows us to theorize the rate at which new variations appear. Specifically, it enables

us to see how differences in the extent of cognitive diversity across the relevant community

(and opportunities for people with different ways of thinking about the world to come into

contact, converse with and observe each other) are likely to be associated with systemat-

ically different levels of institutional innovation. Societies where there is a high degree of

contact among cognitively diverse people will produce variant institutional beliefs relatively

frequently. Societies that are more homogenous, or that do not provide for rich contact

between diverse individuals will be far less likely to produce such innovations.

Second, it allows us to theorize how different institutional beliefs will fare across different

social settings, so that some have a relatively high probability of being selected, disseminating

to produce new institutional stable states, while other beliefs have a very low probability.

Specifically, it allows us to model how power disparities affect the spread of institutional

beliefs. Beliefs that are uncongenial to socially influential actors are ipso facto less likely

to spread across all plausible social networks. We can model the differences in action path

faced by different beliefs by cumulatively deleting influential nodes. Uncongenial beliefs will
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face an effective social network from which most influential nodes have been deleted (because

the individuals occupying these nodes will not transmit the beliefs to others), and will be

correspondingly unlikely to disseminate and generate new stable state institutions. Equally,

however, different social settings may have greater or lesser power disparities (which we can

represent by generating different network topologies). Topologies in which elite actors are

less dominant (e.g. the differences between high degree nodes and ordinary nodes are less

marked) will also be more resistant to node deletion, and hence less susceptible to the ability

of elites to block uncongenial ideas. Taking these two together allows us to understand the

rate of institutional change far better than before

4 Evidence from Athens and Sparta

As with other major approaches to institutional change [Greif and Laitin, 2004], our approach

is difficult to test. It explicitly assumes that institutional change has an irreducibly stochastic

element. Hence, we look instead to show how it can plausibly help resolve practical problems

in the study of institutional change, applying our argument to the key cases of Athens and

Sparta during the Classical and Hellenic eras.

Athens and Sparta have become paradigmatic historical cases for a highly influential

current approach to institutional change and economic history [Carugati, 2019]. North et al.

[2009b] argue that the most crucial distinction in economic history and today is between

societies with ‘limited access orders’ which prevent non-elites from participating in organi-

zational life and ‘open access orders’ which allow anyone to participate, leading Carugati

et al. [2015], Ober and Weingast [2016] and others to characterize Athens and Sparta re-

spectively as exemplary cases of open and limited access orders. However, this literature

has difficulty in capturing the different institutional dynamics of open and limited access or-

ders. On the one hand, treatments such as Ober and Weingast [2016], Carugati et al. [2015],

characterize the institutions of both societies as stable equilibria in underlying games, where
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institutions will last as long as the parameters (or quasi parameters [Greif and Laitin, 2004])

argue that external selective forces of inter-state competition guided their evolution. On the

other, scholars like Ober [2009, 2008] invoke external selective pressures from the Athenian

city-state system to argue that Athenian democracy flourished better than its competitors.

The first set of approaches has difficulty in discussing dynamic processes of institutional

change at all, while the second, by privileging external selective pressures, has difficulty

in systematically describing the relationship between outside forces and the different inter-

nal institutional trajectories of the two cases, or of. This reflects the broader difficulty of

institutional theorists across the social sciences in modeling the dynamics of institutional

change.

Our account provides a systematic way of understanding the different trajectories over

time of the two societies, plausibly demonstrating how differences in the cities’ respective

levels of cognitive heterogeneity and power asymmetries had consequences for their respective

rate and kind of institutional change.

The two cases are roughly comparable. Ancient Athens and ancient Sparta were both

“super-poleis” [Ober, 2008], subjected to much the same environmental pressures, and yet

with different levels of heterogeneity and power asymmetry as described by contemporary

observers.

There is strong evidence that Athens’ level of cognitive heterogeneity - and contact be-

tween heterogenous individuals - was unusually high in the ancient world. Athens had a

diverse internal economy, and its political structures actively encouraged contact between

individuals from diverse backgrounds. Cleisthenes’ reforms in 507 BCE created ten artificial

tribes each of which was populated with one third coming from seaside villages, one third

from urban neighborhoods, and one third from rural agricultural villages. The body that

set the agenda for the assembly consisted of 50 men drawn by lot from each tribe. This

council lived together for the year to guide policy in the city center; the chairmanship ro-

tated from month to month from one tribe to the next. Both tribe and council brought
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individuals from diverse backgrounds into sustained contact with each other. In addition,

Athens engaged in extensive trade relations (the Athenian harbor in the Peiraeus was at

the center of a lively Mediterranean economy) and had a substantial internal population of

foreign permanent residents, or ‘metics’ as well as manumitted slaves. Foreign intellectuals

attracted to the city included Herodotus, Protagoras, Gorgias, Lysias, and Aristotle, and at

the annual performance of the tragedies, seats were reserved in the theater for foreigners.

Although Socrates was notoriously executed for having introduced novel ideas about the

gods to the city, this did not happen until he was 70. For most of the decades preceding his

death, the Athenians tolerated his quite heterodox views, and continued after his death to

tolerate contention between different schools of philosophy with competing perspectives.

In contrast, Sparta’s internal cognitive heterogeneity and exposure to external perspec-

tives was unusually low. Sparta sought both to reduce cognitive diversity among its citizens,

and to control even more tightly such cognitive diversity as did arise. Sparta’s famed educa-

tion for its young citizens was homogenizing, even to the level of dress. They sang the same

songs from Tyrtaeus continuously for several centuries. They were taught to spy on each

other and report wrongdoing. They called themselves “homoioi” or “similar. The relatively

very small population of citizens did indeed have regular contact with each other, but under

commensal institutions engineered to promote a strong common culture among a group of

individuals with a shared economic interest in maintaining an economy based on serf agri-

culture. After approximately 500 BCE (Cartledge 2002, 93), Sparta furthermore sought to

discourage contact between citizens and foreigners for fear that alien ideas might spread and

become established, deprecating trade and the use of money. After 500, Spartans begin to

conduct ritual expulsions of non-elite foreigners (xenelasia) to avoid introducing corrupting

ideas (Xen. RL 14A.4). There was a complementary proscription against travel abroad for

Spartan citizens. Sparta’s economy was primarily agrarian, relying on the work of a large

body of helots, who were effectively slaves, and resident perioikoi, with limited rights. The

ban on silver and gold and on citizens practicing trades, meant both that fewer foreigners
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sought out Sparta than Athens, and that its citizenry, who were specialists in violence, had

less occasion to interact with foreigners on account of sharing a craft or other business.

There is contemporary evidence that these differences in the level of cognitive hetero-

geneity had consequences for the spread of abilities and ideas. Thucydides, for example

notes that while the Athenians were famously talkative—they lived in a world ringing with

discourse — the Spartans were characteristically tight-lipped (the word ‘laconic’ comes from

the archaic name for the region surrounding Sparta, Lakonia). In Pericles’ famous funeral

oration, Athens is described as “open to the world,” while Sparta periodically deports foreign-

ers. Records of Spartan debates provide relatively few examples of expression of alternative

views.

There were similarly sharp differences in the level of power asymmetries across the two

cities. With the exception of brief oligarchical interludes such as the rule of the Thirty, the

Athenian political system provided equal rights to all male citizens while retaining subjugated

positions for women and slaves. While elites dominated public speech (in general, known

speakers were wealthy elite politicians, and older men were invited to speak first), they had

to respond to the interests of a broader public of male citizens, allowing arguments and

ideas to bubble up from a broader public. Solon’s constitution instituted the rule of ho

boulomenos, “whoever wishes,” which in principle allowed anyone to speak at any time.

Sparta had far more limited citizenship, which depended both on descent and a stringent

property requirement. It subjected the vast majority of Sparta’s inhabitants to a reign of

terror and surveillance intended to prevent revolt. Given that the helots and perioikoi were

situated quite differently from the Spartan citizens, and given that the helots revolted three

times, we can assume that they would have preferred quite different institutions from those

that dominated. Sparta took aggressive and systematic action to control against selection

of beliefs from these contexts. Spartan citizens conducted an annual war against the helots,

and subjected them to campaigns of state-sponsored mass killings conducted by specialized

troops or “Krypteia,” the “hidden ones” (Ober 2015, 139). Helots were sometimes offered
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the chance to become perioikoi - but might disappear if they accepted(Thucydides 4.80.3,

cited in Ober 2105, 349n36).

These differences would lead us to expect that the two cities would be associated with

very different trajectories of institutional change. First, there would be substantial differ-

ences in the rate at which variations are thrown up. New institutional beliefs would be

generated relatively frequently in Athens, thanks to regular social intercourse both with the

outside world (via trade and other relations) and among citizens coming from different back-

grounds. In Sparta, in contrast, the rate of generation of new institutional beliefs would

be substantially lower, thanks to far lower internal heterogeneity and contact with external

viewpoints. Furthermore, there would be substantial differences in the kinds of variant in-

stitutional beliefs that were selectively retained to become epidemic, leading to institutional

change. In the Athenian case, we would expect that institutional changes that were benefi-

cial to a relatively diverse body of male citizens would have a relatively high chance of being

selected (although these institutional changes would only accidentally benefit slaves, women

or other excluded groups). In Sparta, in contrast, institutional beliefs would be extremely

unlikely to be adopted unless they specifically benefited a small and elite group of citizen-

landowners with very particular interests in the maintenance of a heavily asymmetric set of

power relations.

Together, these mechanisms would predict that new institutional beliefs would arise more

frequently in Athens, and that socially beneficial beliefs would have a high chance of dis-

seminating, generating institutional change. In Sparta, in contrast, broadly beneficial insti-

tutional adaptations would be less likely to arise from ordinary social intercourse, and less

likely to spread and lead to temporary institutional equilibria when they did arise.

These predictions accord with the observation of contemporary commentators such as

Thucydides that rates of cultural and political change were much greater in Athens than in

Sparta. Athens experienced seven major rounds of institutional reform, between 590 BCE

and 322 BCE. The Spartans, in contrast, experienced major institutional change in the
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period from 800 to 600 but then not again after that, until the collapse of their system of

serfdom (helotage) in the wake of their 371 military defeat at Leuctra.

The timetable of major institutional change in Athens is as follows:

• 624 BCE: Draco’s codification, and the organization of courts. 594/3 BCE: Solon ends

debt slavery for Athenian citizens; introduces the assembly and makes prosecution and

assembly speech open to anyone.

• 561-510 BCE: The Psistratid tyranny introduces thirty circuit judges and may have

institutionalized tragedy and comedy as a civic ritual.

• 508/7 BCE: The reforms of Cleisthenes replace the four historic tribes with ten artificial

tribes, introduces the Council of 500 as the agenda setting body for the assembly, and

extends the court system.

• 462-460 BCE: Reforms led by Ephialtes and Pericles rein in the power of the elite

court, introduce jury pay, open the chief magistracies to all but the poorest and limit

citizenship to those with Athenian parents.

• 411/410 BCE: Oligarchical changes under the “rule of the 400,” and then under the

rule of the Five Thousand.

• 410/409 BCE: A commission is established to collect and publish all existing laws.

• 404/3 BCE: After Sparta defeats Athens in the Peloponnesian War, it installs the rule

of the Thirty Tyrants in Athens.

• 403 BCE: Democratic resisters restore democracy, establishing amnesty, create a board

of nomothetai to review the laws, establish a distinction between laws and decrees,

introduce pay for service in the assembly and, by 380, constrain the power of generals

to punish with death in the field.
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• 338-332 BCE: The Treasury of the City acquires administrative pre-eminence; an effort

is made to restore the powers of the Areopagus; new offices, like the “orderers” or

kosmêtai and “moderators” or sôphronistai, are introduced, and military training for

young men is intensified.

The timetable of major institutional change in Sparta is as follows:

• 776 BCE: Sparta and Elis found the Olympic Games.

• 735 BCE: Sparta conquers Messenia and establishes its system of serfdom (helotage),

distributing land to all the Spartan citizens (numbering approx. 9000). 710 - 650 [?]

BCE: Lycurgan reforms introduced the council of elders, which included the traditional

two kings; allocated power to citizens to vote on proposals made by the Gerousia,

introduced common education for Spartan children, a common mess for shared meals,

the ban on silver and gold coinage, the ban on interactions with foreigners, the creation

of the Crypteia, and, possibly, land redistribution and the ephors, chief magistrates

who were on par to the kings.

• c. 495-90 BCE: Sparta introduces the practice of xenêlasia, or expulsions of foreigners.

(Figueira 2003, p. 69).

• 409 BCE: King Pausanias tries to reduce the power of the ephors (Arist. Pol. 1301 b

17) and was expelled from Sparta.

• 400 BCE: A succession battle, which is won when Agesilaus accedes to the throne.

• 371 – 369 BCE: Sparta’s citizen population is down to 1500 adult, male citizens, and

Sparta is defeated by the Boeotians at Leuctra. This is followed by the liberation of the

Messenian Helots, the foundation of Messene as an independent polis; and the collapse

of the Spartan system of serfdom (helotage).
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In short, a basic review of the timetable of institutional change confirms what any num-

ber of sources—Thucydides, Xenophon, Plato, Aristotle, and Plutarch—report. Institutional

change in Athens was characterized by relatively frequent change (albeit not always for the

better) and by frequent shifts towards a greater diffusion of benefits to male citizens (some-

times followed by efforts to roll them back). Spartan society, in contrast, was characterized

by relative institutional stability, and the conservation of power and benefits to a small subset

of the population.

In the Spartan case, there is a clear correlation between minimalized cognitive diver-

sity, power structures that aggressively work against selection of alternative beliefs, and a

relatively low rate of social and political change. Athens experienced greater political turbu-

lence but also showed considerable resilience. It seems reasonable to assume that Athenian

institutions tended to have benefits for a relatively broad public, as compared with its non-

democratic competitors, although women remained without political voice, and their slave

system was intact as of 322. Spartans, in contrast lived in a stable polity with no fundamental

regime change for nearly three centuries; over the course of the last seventy years, however,

of their status as a superpolis, their citizen numbers steadily declined. They were incapable

of changing course to correct for that decline. By the time of the Battle of Leuctra, they no

longer had enough citizens to populate their fighting force, at which stage they were forced

to recruit perioikoi without the traditional Spartan training, undermining their traditional

institutions. While both cities may be said to have ‘flourished’ in some very loose sense,

Athens clearly produced more rapid innovations, that tended to benefit more of its citizens,

albeit at the cost of substantially increasing instability.

These empirical findings are consonant with our framework’s predictions, suggesting that

an evolutionary approach can indeed help explain differences in the rate and kind of insti-

tutional change across different polities. The kind of long term stability that Carugati et al.

[2015] argue are characteristic of Sparta are plausibly less a reflection of the nature of equi-

libria as such, than a specifically homogenous cultural environment, and enduring power
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asymmetries that ensured that very few of the variations that were thrown up were likely to

be selected. The experience of Athens, in contrast, demonstrates how high levels of hetero-

geneity can combine with less asymmetric power relations to produce more rapid changes

that are, much of the time, likely to be beneficial to a broader subset of the population.

5 Conclusions

This article addresses a major besetting problem of institutional theory, showing how an

evolutionary approach can model dynamic trajectories of institutional change, and capture

variation across different social settings. Our approach provides a basic toolkit that can be

applied in a variety of ways beyond the cases studied. Most obviously, it can be extended

to understand other aspects of the historical transition from closed to open societies. Thus,

for example, the close association between the diffusion of early Protestant arguments for

reform in German speaking cities and the level of media competition [Dittmar and Seabold,

2015] can readily be understood in our framework, which may also plausibly be applied

more generally to the diffusion of ideas in the Enlightenment [Mokyr, 2016]. So too, our ap-

proach may help clarify debates about the consequences of communications technology for

autocracies and democracies [Farrell, 2012]. Specific applications within the social sciences

include debates within political science over the time duration of institutional change [Hacker

et al.], in cognitive anthropology over the diffusion and decay of transmitted cultural prac-

tices [Sterelny, 2017], in sociology over the relationship between networks and institutional

diffusion [Clemens and Cook, 1999], and in economics over the persistence of apparently

inefficient institutions over time [North, 1990]. While our approach will not resolve any of

these debates it promises to make them more precise and tractable, by providing a gen-

eral framework for modeling strategies, as well as disclosing other plausibly relevant causal

factors that are not addressed systematically by existing approaches.

We also note the limitations of our approach. As our brief empirical account of Athens
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and Sparta indicates, the openness of democratic systems to new changes may be a source

of instability as well as adaptation - some innovations turn out to be harmful. Our mod-

eling assumptions effectively preclude the possibility of broadly harmful institutions being

adopted (while it is theoretically possible that evolutionary forces could lead to inferior in-

stitutions becoming established, it is wildly unlikely). However, by making this and other

limiting assumptions explicit, while still providing tractable results, it serves as a spur to

the development of better theories that could better address other urgent problems such as

the instability of democracy.

A Mathematical Appendices

A.1 Large Deviations in Evolutionary Processes

Most readers will be familiar with the law of large numbers: if Y1, Y2, . . . Yn are statistically-

independent and identically distributed numerical variables, all with expected value µ, then

as n → ∞, 1
n

∑n
i=1 Yi ≡ Xn → µ. The most common sense of convergence here is “conver-

gence in probability” or “stochastic convergence”: you4 can pick any margin of approximation

η, and level of confidence δ, and I can find a (finite) number N(η, δ) so that n ≥ N(η, δ)

guarantees P (|µ−Xn| > η) ≤ δ. Turned around, given η and n, there is always a probability

δ(η, n) of an η-sized deviation, which goes to zero as n→∞.

This usual form of the law of large numbers is true in great generality, but says nothing

about the rate of convergence, i.e., the form of the function δ(η, n). The theory of large

deviations5 gives quantitative versions of laws of large numbers, focusing on the rate of

4We refer readers un-used to the idea of universal and existential quantifiers as moves in a two-person
game to Hintikka [1996].

5This subject has spawned a large literature in probability theory and adjacent fields. The systematic
modern definitions, terminology and notation is largely the work of Varadhan and collaborators (reviewed in
Varadhan 1984, 2008). den Hollander [2000] is a fairly friendly introduction, presuming minimal knowledge
of advanced probability. Dembo and Zeitouni [1998] is a deservedly-standard textbook which does presume
measure-theoretic probability. Ellis [1985] explains the uses of the theory for the foundations of statistical
mechanics in physics, as does, in less rigorous fashion, Touchette [2009]. For early applications to statistical
inference, see Bahadur [1971].
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convergence. Remarkably, such results also give (matching) lower bounds on the probabilities

of such deviations from the expected behavior. Abstractly, such “large deviation principles”

consider a family of random variables parameterized by a real number ε, say Mε, with limit

µ, and assert that

P (Mε = x)→ exp
{
−ε−1J(x)

}
(1)

for some “rate function” J(x) ≥ 0, which takes its minimal value of 0 at µ. A still more

precise statement, which is what is usually used technically6, is that, as ε→ 0,

−ε logP (Mε ∈ A)→ inf
x∈A

J(x) (2)

The probability distribution thus concentrates around the point µ which minimizes the

rate function, since the probability of visiting any set A not containing the minimizer µ

shrinks exponentially — but fluctuations away from µ do happen, since those probabilities

are only exponentially small, and not zero. The parameter ε thus gauges the extent of such

fluctuations, or their importance compared to the limiting behavior.7 Moreover, such a large

deviation principle will apply conditionally: since, if B ⊂ A, P (Mε ∈ B|Mε ∈ A) = P(Mε∈B)
P(Mε∈A) ,

one has −ε−1 logP (Mε ∈ B|Mε ∈ A)→ infx∈B J(x)−inf x ∈ AJ(x) — “if something unlikely

happens, it happens in the least unlikely way possible”.

The exponential form of the probabilities that one obtains from the large deviation prin-

ciple suggest the result of multiplying large numbers of independent events, and this is indeed

one common route to an LDP. Roughly, if the outcome is a function of many statistically

independent inputs, and each of these inputs has a smaller and smaller effect as ε shrinks,

we may generically expect an LDP to hold.8 (Obviously this is a very loose statement; the

6Actually, even this must be replaced by a slightly more complicated statement that handles some compli-
cations relating to the distinction between open and closed sets, and/or the possibility that the rate function
J has dis-continuities. These details do not matter for our purposes.

7In the case of sample means and the basic law of large numbers, one usually takes ε = 1/n. In fact, one
usually obtains a rate function of the form J(x) ∝ (x − µ)2, at least for x near µ, as might be anticipated
from the central limit theorem.

8The usual counter-example, where a large deviation principle does not hold, is to consider a sequence
where Y1 is picked randomly from an arbitrary distribution, with mean µ, but thereafter all Yn = Yn−1. The
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cost of precision is a lot of technicality that is un-illuminating for our present subject.) One

area where these conditions apply is in stochastic models of learning in games. Here the

point is not that different players are statistically independent — they are not! — but that

each player, at each move, is at least partially subject to independent random influences. So

long as no one player, or move, has too much of an effect over the course of the game, we

can anticipate that an LDP will hold, and such results have been rigorously established for

large cases of models.

One advantage of this rather abstract formulation, however, is that the same machinery

can work in situations very different from that of simple sample averages. For example, the

Mε might be whole trajectories of stochastic processes, i.e., each realization x would be a

function [0, T ] 7→ Rd. We can then ask whether these stochastic processes converge on to

some limiting process as ε → 0, and, when an LDP applies, we would know that (i) the

most likely trajectory is the one which minimizes the rate function, i.e., the x∗ such that

J(x∗) = 0, and (ii) trajectories x which deviate from x∗ become exponentially more and

more unlikely, as J(x) grows. In these cases, the rate function J(x) typically takes the form

of what is called, by analogy to physics, an “action”, i.e., an integral

J(x) =

∫ T

t=0

L(x(t), ẋ(t))dt (3)

where L is some function of both the position of the trajectory and its velocity or first

derivative (or possibly higher derivatives, etc.), so that the convergence to the most-likely

trajectory x∗ is also a “principle of least action”9. When this is the case, we know from

the calculus of variations [Boas, 1983, §9.5] that the optimal trajectory x∗ will solve the

(“Euler-Lagrange”) differential equations

∂L

∂xi
− d

dt

∂L

∂ẋi
= 0 (4)

sample mean does not converge to µ, because the initial random draw never becomes any less influential.
9Whether something like a large deviations principle is the origin of the principle of least action in physics

is an interesting question, but gets into technical issues which aren’t relevant here at all [Eyink, 1996].
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which resolves into a system of ordinary differential equations for the evolution of x∗(t).

To make all this more concrete, we will consider a series of increasingly elaborate ex-

amples (§§A.1.1–A.1.2), building towards a general result (§A.1.3) about the behavior of

“population games”, in which agents of multiple types receive pay-offs which are functions

of the distribution of actions over the population, and can change their actions in response

to those pay-offs. (The details will be made precise below.) This can be handled, at least

non-rigorously, by mathematically elementary tools, and doing so illustrates the kinds of

considerations that go into establishing LDPs for more complicated processes. This lets us

treat the problem of transitions between stable states of population processes in considerable

generality (§A.1.6). We build up to this, however, by first considering LDPs for independent,

binary events, and for a simple model of the transmission of diseases or social information.

A.1.1 LDP for Binary Sequences

We start by considering a sequence of binary outcomes, so each Yi is either 0 or 1, and

Xn = 1
n

∑n
i=1 Yi is the proportion of 1s in the first n variables. We assume that these binary

variables are statistically independent, with the common probability P (Yi = 1) = p. What

is the probability that Xn = x, for any particular x? By assumption, nXn has a binomial

distribution, so

P (Xn = x) = P (nXn = nx) (5)

=

(
n

nx

)
pnx(1− p)n−nx (6)

=
n!

(nx)!(n− nx)!
pnx(1− p)n−nx (7)

We’re interested in the exponential decay rates of probabilities, so we take logarithms and

divide through by n:

1

n
logP (Xn = x) =

1

n
(log n!− log (nx)!− log (n− nx)!) + x log p+ (1− x) log (1− p)(8)
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Since we’re interested in what happens at large n, we use Stirling’s approximation, that

log n! ≈ n log n:

1

n
logP (Xn = x) ≈ log n− x log nx− (1− x) log (n− nx) + x log p+ (1− x) log (1− p)(9)

= −x log x− (1− x) log (1− x) + x log p+ (1− x) log (1− p) (10)

The first two terms, which are independent of the true probability p, are what’s left of the

combinatorial factor
(
n
k

)
; they indicate that some proportions (those near x = 0.5) can be

realized in a very large number of ways, and occupy a large region in the space of possible

outcomes10. The other two terms, involving both x and p, are about the mis-match between

what the system “wants” to do (p) and the outcome we’re considering (x). We can combine

terms to get

1

n
logP (Xn = x) ≈ −x log

x

p
− (1− x) log

1− x
1− p

− ≡ J(x, p) (11)

which one can check is maximized, at 0, by taking x = p. (The quantity on the right-hand

side is the (Kullback-Leibler) divergence between a binary distribution with probability

x and one with probability p, also called the “relative entropy”, or “expected normalized

log-likelihood”.) Since n has disappeared from the right-hand side, we also have the limit:

lim
n→∞

1

n
logP (Xn = x) = −J(x, p) (12)

Finally, we can get the probability that Xn falls into some range of outcomes B: since

P (Xn ∈ B) =

∫
x∈B

P (Xn = x)

10In fact, −x log x − (1 − x) log (1− x) is the entropy of a binary distribution with probability x, so
high-entropy outcomes are favored, all else being equal.
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and each term in the integral is decaying exponentially as n grows, the integral will also

shrink exponentially, but with the slowest achievable decay rate11:

lim
n→∞

1

n
logP (Xn ∈ B) = −min

x∈B
J(x, p)

Obviously, this is not a rigorous demonstration12, but the deficiencies can be patched up, at

some cost in technicalities.

The kind of result also generalizes: rate functions generally combine two terms, one of

them purely combinatorial, gauging the size of the region in state space compatible with

a given outcome, and another, which indicates how much points in that region are favored

or disfavored by the dynamics themselves. The sum of these two parts, the over-all rate-

function, is generally a divergence between two distributions.

LDP for Multinomial Sequences Essentially the same derivation works if the Yi are not

binary, but take values in any finite space, independently and with a common distribution p.

If we make Xn the sample distribution of Y1, . . . Yn (also called the “empirical distribution”),

then

P (Xn = x) = (n!)
k∏
j=1

p
nxj
j

(nxj)!
(13)

where k is the number of categories or possible values, p1, . . . pk are their true probabilities,

and x1, . . . xk are the sample proportions. The math then follows along exactly the same

lines as for the binary, k = 2 case. The final result, sometimes called “Sanov’s theorem”, is

lim
n→∞

1

n
logP (Xn ∈ B) = −min

x∈B
J(x, p) (14)

11This is “Laplace’s principle” for approximating exponential sums or integrals.
12What if nx isn’t an integer? How do we know a sum of exponentially-decaying quantities is also expo-

nentially decaying? Etc., etc.
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where now the divergence is

J(x, p) =
k∑
j=1

xj log
xj
pj

(15)

A.1.2 LDP for the SI Epidemic Model

We next consider a very basic model of contagion or social influence, where a population

of n agents is divided into two types (or “compartments”), S for “susceptible” and I for

“infectious”13. The one transition possible is that a susceptible individual can acquire the

infection from an infectious individual. (As a reaction, this would be written S + I → 2I.)

Time proceeds in discrete steps of length h, and the infectiousness rate is ρ, so the probability

of infection of a generic S is ρ(I(t)/n)h. Define X(t) to be (S(t)/n, I(t)/n), so the infection

probability is ρ(x(t))h. One typically assumes that the more individuals are infected, the

greater the probability of encountering one, so that ρ(x(t)) = rx2(t) for some constant r.

This assumption is not, however, essential to what follows.

Conditional on X(t) = x(t), the distribution for the number of new infections is binomial,

with n−I(t) = nx1(t) trials, and success probability hρ(x(t)). (We return to the assumption

that the infection rate is proportional to the density of the infected in §A.1.5 below.) The

number of new infections, in turn, determines both S(t+ h) and I(t+ h).

We can now work out the transition probabilities, much as we worked out probabilities

13In the jargon, this is an “SI” model. More elaborate models add more types or compartments, e.g., R for
“recovered” (or “removed”), leading to SIR models, or allow for more transitions, e.g., SIS models in which
infected agents can revert to being susceptible. Models of this form are extensively used in epidemiology
and ecology, and have been ever since pioneering work in the early 20th century. (It is conventional these
days to attribute this to the work of Sir Ronald Ross on malaria, but early reviews (e.g., Lotka 1924, ch.
VIII, pp. 79–82) make it clear that this was much more of a collective effort.) For a textbook treatment,
see Ellner and Guckenheimer [2006].
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for binary sequences above:

P (X(t+ h) = x(t+ h)|X(t) = x(t)) (16)

=

(
nx1(t)

n(x2(t+ h)− x2(t))

)
(hρ(x(t)))n(x2(t+h)−x2(t))(1− hρ(x(t)))n(x1(t)−(x2(t+h)−x2(t)))

logP (X(t+ h) = x(t+ h)|X(t) = x(t)) (17)

= log (nx1(t))!− log (n(x2(t+ h)− x2(t)))!− log (n(x1(t)− (x2(t+ h)− x2(t))))!

+n(x2(t+ h)− x2(t)) log hρ(x(t)) + n(x1(t)− (x2(t+ h)− x2(t))) log (1− hρ(x(t)))

≈ nx1(t) log n+ nx1(t) log x1(t) (18)

−n(x2(t+ h)− x2(t)) log n− n(x2(t+ h)− x2(t)) log (x2(t+ h)− x2(t))

−n(x1(t)− (x2(t+ h)− x2(t))) log n

−n(x1(t)− (x2(t+ h)− x2(t))) log (x1(t)− (x2(t+ h)− x2(t)))

+n(x2(t+ h)− x2(t)) log hρ(x(t))

+n(x1(t)− (x2(t+ h)− x2(t))) log (1− hρ(x(t)))

= n(x1(t)− (x2(t+ h)− x2(t))− (x1(t)− (x2(t+ h)− x2(t)))) log n (19)

+nx1(t) log x1(t)

+n(x2(t+ h)− x2(t)) log
hρ(x(t))

x2(t+ h)− x2(t)

+n(x1(t)− (x2(t+ h)− x2(t))) log
1− hρ(x(t))

x1(t)− (x2(t+ h)− x2(t))
1

n
logP (X(t+ h) = x(t+ h)|X(t) = x(t)) (20)

≈ x1(t) log x1(t)

+(x2(t+ h)− x2(t)) log
hρ(x(t))

x2(t+ h)− x2(t)

+(x1(t)− (x2(t+ h)− x2(t))) log
1− hρ(x(t))

x1(t)− (x2(t+ h)− x2(t))
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Combine terms with common non-log pre-factors, so

1

n
logP (X(t+ h) = x(t+ h)|X(t) = x(t)) (21)

≈ x1(t) [log x1(t) + log (1− hρ(x(t)))− log (x1(t)− (x2(t+ h)− x2(t)))]

+(x2(t+ h)− x2(t))
[
log

hρ(x(t))

x2(t+ h)− x2(t)
− log

1− hρ(x(t))

x1(t)− (x2(t+ h)− x2(t))

]

As we let h→ 0, we have x2(t+h)−x2(t)→ hẋ2(t) = −hẋ1(t). (We can restrict ourselves

to continuous trajectories because we are also letting n grow, so we can’t have very large

jumps, i.e., discontinuities.) Furthermore, using the fact that log (1 + a) ≈ a for small a, we

get

1

n
logP (X(t+ h) = x(t+ h)|X(t) = x(t)) (22)

≈ x1(t)

[
log x1(t)− hρ(x(t))− log

(
x1(t)

(
1− hẋ2(t)

x1(t)

))]
+hẋ2(t)

[
log

ρ(x(t))

ẋ2(t)
+ hρ(x(t)) + log

(
x1(t)

(
1− hẋ2(t)

x1(t)

))]
= x1(t)

[
−hρ(x(t))− log

(
1− hẋ2(t)

x1(t)

)]
(23)

+hẋ2(t)

[
log

ρ(x(t))

ẋ2(t)
+ log x1(t) + hρ(x(t)) + log

(
1− hẋ2(t)

x1(t)

)]
= hx1(t)

[
−ρ(x(t)) +

ẋ2(t)

x1(t)

]
(24)

+hẋ2(t)

[
log

ρ(x(t))x1(t)

ẋ2(t)
+ hρ(x(t))− hẋ2(t)

x1(t)

]

Since we are letting h → 0, second-order terms in h become negligible, so we can drop the

last two terms on the right-hand side, getting

1

n
logP (X(t+ h) = x(t+ h)|X(t) = x(t)) (25)

≈ h

(
ẋ2(t)− x1(t)ρ(x(t)) + ẋ2(t)

[
log

ρ(x(t))x1(t)

ẋ2(t)

])

Since transitions at each time step are independent of previous transitions given the
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current state, if we want the probability of a whole trajectory x : [0, T ] 7→ R, we would

multiply the probabilities, i.e., add the log probabilities. Hence

1

n
logP (X = x) (26)

≈
T/h∑
i=0

h

(
ẋ2(ih)− x1(ih)ρ(x(ih)) + ẋ2(ih) log

ρ(x(ih))x1(ih)

ẋ2(ih)

)
→

∫ T

t=0

dt

(
ẋ2(t)− x1(t)ρ(x(t)) + ẋ2(t) log

ρ(x(t))x1(t)

ẋ2(t)

)
(27)

Since, by convention, the rate function is the negative of the rate of exponential probability

decay, we have

J(x) =

∫ T

t=0

dt

(
ρ(x(t))x1(t)− ẋ2(t) + ẋ2(t) log

ẋ2(t)

ρ(x(t))x1(t)

)
(28)

Thus, the rate function is an integral along the trajectory, as promised, with the integrand

being a function of both x(t) and ẋ(t), i.e.,

J(x) =

∫ T

t=0

L(x2(t), ẋ2(t))dt (29)

L(u, v) = ρ(u)(1− u)− v + v log
v

ρ(u)(1− u)
(30)

(Remember that x1(t) = 1− x2(t).) It is straight-forward to check14 that L(u, v) = 0 when

and only when v = ρ(u)(1−u), and moreover that L(u, v) ≥ 0. Thus, the action-minimizing

trajectory is the trajectory x∗ which solves the ordinary differential equation

ẋ2(t) = ρ(x(t))(1− x2(t)) (31)

But this is well-known to be the ODE version of the SI model [Ellner and Guckenheimer,

14The first assertion follows by direct calculation, which also shows that this is a local minimum (in v). For
the second, observe that since v log v is convex, L(u, v) is convex in v for each u, hence the local minimum
at v = ρ(u)(1− u) is also a global minimum (for each u).
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2006, chapter 6].

A.1.3 LDP for General Population Processes

The SI model we’ve just considered is a member of a much broader family of what are

sometimes called population processes. In these, a population of agents is divided into a

finite number k of distinct types or classes, but agents can switch types, with probabilities

that are a function of the current over-all distribution of the population across types. This

very broad class of models includes a great many commonly-used models of social learning

and change. Much of evolutionary game theory, for instance, concerns “population games”

[Sandholm, 2010], where each agent chooses a strategy (= type), receives a pay-off which

depends on the distribution of strategies, and changes strategies in response to its payoff.

A slight extension makes changes of strategy a function of the recent history of the game,

and have been used to model the evolution of institutions and the self-organization of social

conventions [Young, 1998].

In this section, we will work out an LDP for quite generic population processes. The

argument will work very similarly to that for the SI model, but with one important additional

complication. In the SI model, we could identify the rate of change in the proportion

of infectious agents, . . . X2(t), with the rate of transitions from susceptible to infectious,

because that was the only transition. In general, however, the net rate of change for type j,

Ẋj(t), will be a sum of the gross transition rates to type j from all other types, minus the

gross transitions from type j to all other types. It will turn out that we will need to track

all these transitions, at least as an intermediate step.

Here then is the general case. There are k types of agent, so X(t) (or its realization, x(t))

is a k-dimensional vector, though confined to the simplex, i.e., the region where xi(t) ≥ 0,∑
i xi(t) = 1. Over a time-step of length h, the probability that any one agent of type i

changes to type j 6= i is hρij(x). Introduce the variables Yij to be the gross fluxes from type

i to type j, i.e., changes in proportion per unit time. Clearly, if we know all the Yij, we
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can determine X(t+ h), since Xi(t+ h) = Xi(t)− h
∑

j 6=i Yij + h
∑

j 6=i Yji. For convenience,

define yi· ≡
∑

j 6=i yij, and similarly ρi· ≡
∑

j 6=i ρij.

Now, let’s look at the large deviations of Y given X.

1

n
logP (Y = y|X = x) (32)

=
1

n
log

k∏
i=1

(nxi)!(∏
j 6=i (nhyij)!

)
(nxi − nhyi·)!

(∏
j 6=i

(hρij(x))nhyij

)
(1− hρi·(x))nxi−nhyi·

≈ 1

n

k∑
i=1

nxi log nxi −
∑
j 6=i

nhyij log nhyij − (nxi − nhyi·) log (nxi − nhyi·) (33)

+nh
∑
j 6=i

yij log hρij + n(xi − hyi·) log (1− hρi·)

=
k∑
i=1

(log n)

(
xi − h

∑
j 6=i

yij − (xi − hyi·)

)
+ xi log xi + h

∑
j 6=i

yij log
hρij(x)

hyij
(34)

−xi log (xi − hyi·) + hyi· log (xi − hyi·) + xi log (1− hρi·(x))− hyi· log (1− hρi·(x))

h→0−→
k∑
i=1

xi log xi − xi log xi + xi
hyi·
xi
− hxiρi· (35)

+hyi· log xi −
h2y2i·
xi

+ h2yi·ρi·(x) + h
∑
j 6=i

yij log
ρij(x)

yij

→ h
k∑
i=1

yi· − xiρi·(x) + (log xi)
∑
j 6=i

yij +
∑
j 6=i

yij log
ρij(x)

yij
(36)

= h
k∑
i=1

∑
j 6=i

(yij − ρij(x)xi) + yij log
ρij(x)xi
yij

(37)

using the tricks that, for small h, log (1− hρi·(x)) ≈ −hρi·(x); that, for small h, log (xi − hyi·) ≈

log xi − hyi·/xi; that terms of order h2 are comparatively negligible; and that (regardless of

h) we can re-expand yi· and ρi· as sums of yij and ρij.

33



Accordingly, the rate function for a continuous trajectory (x, y) is

J(x, y) =

∫ T

0

dt
k∑
i=1

∑
j 6=i

(ρij(x(t))xi(t)− yij(t)) + yij(t) log
yij(t)

ρij(x(t))xi(t)
(38)

=

∫ T

t=0

dt

k∑
i=1

∑
j 6=i

Lij(x(t), yij(t)) (39)

Lij(u, v) ≡ ρij(u)ui − v + v log
v

ρij(u)ui
(40)

where it is again easy to check that each Lij ≥ 0, and that the minimum of 0 is attained

uniquely when v = ρij(u)ui. (It should be understood that the rate-function is ∞ if the

fluxes do not net out, i.e.,
∑

i

∑
j 6=i yji(t)− yij(t) 6= 0, or, if any of the fluxes are negative.)

The rate-minimizing trajectory, then, has both

y∗ij(t) = ρij(x
∗(t))x∗i (t) and (41)

ẋ∗i (t) =
∑
j

y∗ji(t)− y∗ij(t) (42)

(Note that this is what we would get, after a lot of manipulation, if we invoked the Euler-

Lagrange equation, Eq. 4.)

As discussed above, in the warm-up case of the SI model, the number of gross transitions

from S to I, which is what Y12 would track, is also equal to the net transitions, which is

what Ẋ2 tracks (or −Ẋ1), so we did not need the Y variable. But in general, when there are

multiple ways into or out of each type, to get a simple form of the rate function, we need

the auxiliary, flux variables Y tracking gross transition rates.

This may seem unfortunate, since we usually don’t care about the augmented process,

with the gross fluxes, but just the X process. However, here we can appeal to a general

result of large deviations theory called “the contraction principle” [den Hollander, 2000]: if
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Z obeys the LDP with rate function J(z), then U = f(Z) obeys the LDP with rate function

inf
z:f(z)=u

J(z)

Accordingly, the probability of seeing a trajectory x will be

− 1

n
logP (X = x) (43)

= inf
(x,y):∀i,t,ẋi(t)=

∑
j yji(t)−yij(t)

∫ T

0

dt

k∑
i=1

∑
j 6=i

(ρij(x(t))xi(t)− yij(t)) + yij(t) log
yij(t)

ρij(x(t))xi(t)

A.1.4 LDP for Population Processes Using Observables Alone

We can make some headway on this by using the calculus of variations. Specifically, we can

turn the constrained minimization in Eq. 44 into an unconstrained problem by adding in

Lagrange multipliers — we’ll need one multiplier function λi(t) for each type i, and they will

(in general) need to be functions of time15. So we’re looking for the unconstrained minimum

of

∫ T

0

dtL(x, ẋ, y, λ) (44)

≡
∫ T

0

dt
k∑
i=1

∑
j 6=i

(ρij(x(t))xi(t)− yij(t)) + yij(t) log
yij(t)

ρij(x(t))xi(t)

−
∫ T

0

dt

k∑
i=1

dtλi(t)

(
ẋi(t)−

∑
j 6=i

yji(t)− yij(t)

)

Now we invoke the general rule of the calculus of variations, that when we’re extremizing

an integral like this, where the inputs to the integrand are various functions f1, f2, . . ., the

15One might think that there would need to be an additional constraint, to ensure that the trajectory
stays on the simplex, that

∑
i xi(t) = 1 for all t. But d

dt

∑
i xi(t) =

∑
i ẋi(t), and if the constraints on the

ẋis hold, that sum is necessarily 0 (because each yij appears in it twice, with opposite signs). Thus any
trajectory which begins on the simplex, and obeys the constraints, will stay on the simplex automatically.
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solution must obey the Euler-Lagrange equations

∂L
∂fi
− d

dt

∂L
∂ḟi

= 0 (45)

Here the functions in question are the xi, the yij, and the λi.

This is easiest for the Lagrange multiplier functions, since they just give us back the

constraint equations (as they are supposed to):

0 =
∂L
∂λi
− d

dt

∂L
∂λ̇i

(46)

= ẋi(t)−
∑
j 6=i

yji(t)− yij(t) (47)

ẋi(t) =
∑
j 6=i

yji(t)− yij(t) (48)

It is also fairly straight-forward for the yij functions (remembering that each yij will show

up in two constraint equations):

0 =
∂L
∂yij
− d

dt

∂L
∂ẏij

(49)

= log

(
yij(t)

ρij(x(t))xi(t)

)
− λi(t) + λj(t) (50)

yij(t) = ρij(x(t))xi(t)e
λi(t)−λj(t) (51)

Finally, for the xi functions, we get

0 =
∂L
∂xi
− d

dt

∂L
∂ẋi

(52)

=
k∑
p=1

∑
q 6=p

(
ρpq(x(t))δip + xp(t)

∂ρpq(x(t))

∂xi

)(
1− ypq(t)

ρpq(x(t))xp(t)

)
− d

dt
(−λi(t)) (53)

λ̇i(t) =
k∑
p=1

∑
q 6=p

(
ρpq(x(t))δip + xp(t)

∂ρpq(x(t))

∂xi

)(
eλi(t)−λj(t) − 1

)
(54)
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where δip is the Kronecker delta, which is 1 when the subscripts agree and 0 otherwise.

Substituting Eq. 51 into Eq. 48 gives

ẋi(t) =
∑
j 6=i

eλj(t)−λi(t)ρji(x(t))xj(t)− eλi(t)−λj(t)ρij(x(t))xi(t) (55)

The k functions on the left are fixed (since we are constraining the process to follow a

particular trajectory of time x, which implies the derivatives ẋ), so we have a system of k

equations in k unknowns, determining the λs.

We can also substitute in for the value of the rate function:

J(x) =

∫ T

0

dt
k∑
i=1

∑
j 6=i

ρij(x(t))xi(t)
(
1− eλi(t)−λj(t) (1− λi(t) + λj(t))

)
(56)

Since (as we’ve just seen) the λs are fixed by the trajectory x, this is a well-defined function

of the trajectory, if somewhat less explicit than would be ideal.

To revert to the SI example from the warm-up, there was only one flux, in the present no-

tation Y12, so y12(t) = −ẋ1(t) = x2(t), and therefore λ1(t)− λ2(t) = log ẋ2(t)/ρ12(x(t))x1(t).

Substituting into Eq. 56 does, indeed, give us back Eq. 28.

A.1.5 Limitations

Above, we have assumed that the transition rates ρ are functions of the instantaneous dis-

tribution over types x(t). This assumption can be weakened somewhat; for example, ρ could

be a function of the history of x up to and including time t, and nothing would change,

provided the transitions are independent of the actual past trajectory given the rates ρ (i.e.,

provided ρ is a sufficient statistic for the transitions). As mentioned, models like this have

often been employed in studying the self-organization of institutions [Young, 1998].

Perhaps more seriously, in making the transition rates functions only of x(t) (or its

history), we have imposed two restrictions. First, the absolute size of the population n is not

allowed to affect the transition rates. Thus, one has the same rate of infection if 10 people are
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infectious in a population of 20, as if a million people were infectious in a population of two

million. This might be rationalized if we had the idea that each individual can only interact

with so many others during each unit of time, and those “alters” (to use the sociological

jargon) were themselves randomly drawn from the population. This however leads to the

second limitation, which is that each individual is assumed to interact with the aggregate of

the population; this corresponds to what epidemiologists call a “well-mixed population” (or

“well-mixed compartment”) and what physicists call a “mean-field approximation”. Even if

one wanted to say that, at each time step, an individual interacts with a random sample of

available alters, and applied the ρ function to the distribution of that random sample, that

would mean that each individual would have a different transition rate, which would itself

be a random quantity. Our analysis above would then amount to replacing these random

rates with their averages, neglecting the additional fluctuations which will result from the

sampling16. There would also be the tricky question of whether each individual would sample

its random alters once, at the beginning of the process, or would keep doing many random

samplings, and, if so, how to make sense of that changing in continuous time17. If the number

of alters is very large, the additional noise from their random choice is presumably small,

and indeed subject to its own LDP, but it would need to be that carefully analyzed.

To put this limitation in perspective, however, we should point out that nothing prohibits

having k being very large, say that each of c spatial sites or locations has its own version

of the r different types (so k = cr). It would be possible, then, for the transition rate for

one type at one site to be a function only of the distribution of types at that site, which

would lead to r distinct copies of the original dynamics. If transition rates at one site are

strongly dependent on the distribution within a site, and only weakly dependent on the

distribution at other sites, we have a situation where there is mostly within-site interaction,

16In the social-learning case, the analysis would be appropriate if each agent played a game with every
other member of the population, averaging the pay-offs. This should be close to what would happen if each
agent played a game with a large random sample of other agents, but how close?

17In the physics jargon, the analysis, which replaces the random sampling by it average effect, is an
“annealed” approximation, as opposed to a “quenched” one which would take the random sampling as done
once and for all at the beginning.
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complemented, perhaps, by migration from site to site. Nothing in the analysis would need

to change. This device would not work, however, if the number of sites is to also grow with

n. Thus we do not directly get results that apply to network models, where each individual

interacts with a different set of individuals and so has (potentially) its own transition rates,

since then the number of sites is just n.

A.1.6 Transitions between Stable States

Since institutional beliefs are self-reproducing, and, in a population sharing (roughly) the

same institutional beliefs those beliefs reinforce each other, an institution is a stable state

of the population. Transitions between institutions are therefore transitions between stable

states. One advantage of the abstract, large-deviations approach is that it gives us some

information about the time needed to move between stable states, and the paths by which

such transitions happen.18 Because of its importance for our argument, and because it

shows something of the power of the large deviations approach, we sketch some of the main

conclusions, with a very rough, heuristic derivation19.

Suppose that a stochastic process obeys an LDP, with a rate function of the form of Eq.

3. Then, generically, the expected time it takes the process to move from one stable20 state s

to another state r will be exponential in V (s, r)/ε, for a “potential” V (s, r) that reflects the

cost of the least-action path from state s to state r. Slightly more formally, define φ(s, r, T )

to be the set of trajectories which start at s, and reach r for the first time at time T ,

φ(s, r, T ) ≡ {x : [0, T ]→ X | x(0) = s, x(T ) = r, t < T ⇒ x(t) 6= r} (57)

Then in turn define V (s, r, T ) as the cost of the least-action trajectory from s to r in time

18The pioneering work on using large deviations to study transitions between stable states, “exit times”
from the domain of a stable attractor, and transition paths, is that of Freidlin and Wentzell [1998]. The
subject has been extensively treated in physics because of its importance for the “metastability” of some
states of matter; see Olivieri and Vares [2005, §2.6, chs. 5, 6] for rigorous modern treatments and references,
which include explicit calculations of the potential V (s, r) (defined below) for many model systems.

19A slightly different, heuristic derivation goes back to ??.
20That is, the state s would be stable in the limiting dynamical process when ε = 0.
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T ,

V (s, r, T ) = inf
x∈φ(s,r,T )

∫ T

t=0

L(x(t), ẋ(t))dt (58)

and define the potential as the cost of the least-action trajectory of any duration:

V (s, r) = inf
T>0

V (s, r, T ) (59)

Finally, define τ(s, r, ε) to be the random amount of time it takes the process to move from

state s to state r when the noise level is ε. Then, quite generically, the expected value of

this exit time grows exponentially with the potential:

lim
ε→0

ε logE (τ(s, r, ε)) = V (s, r) (60)

Because the initial state s is stable, in the limiting, ε = 0 dynamics the process would never

move from s to r, so the time needed would be infinite. In the presence of noise, however, if

the transition is possible at all, it will happen eventually, and, conditional on its happening,

it is exponentially more likely to happen along the least-action trajectory than along any

other. To (roughly) see this, imagine writing the expected time as an integral:

E (τ(s, r, ε)) =

∫ ∞
T=0

TP (τ(s, r, ε) = T ) dT (61)

(slightly abusing notation to use P () as a probability density function). But, by their

definitions,

P (τ(s, r, ε) = T ) = P (X ∈ φ(s, r, T )) (62)

and the probability of the set on the right-hand side decays exponentially fast, following the

large deviations principle. In fact, the minimum value of the rate function on φ(r, s, T ) is
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precisely V (s, r, T ). So

E (τ(s, r, ε)) =

∫ ∞
T=0

∫
x∈φ(s,r,t)

TP (X = x) dxdT (63)

≈
∫ ∞
T=0

T exp {−V (s, r, T )/ε}dT (64)

(65)

Laplace’s method for approximating the integrals of exponential functions [Erdélyi, 1956,

pp. 36-39] tells us that, as ε→ 0, Eq. ?? approaches

σT0 exp {−V (s, r, T0)/ε} (66)

where T0 is the minimizer of V (s, r, T ), and σ is a constant; also, V (s, r, T0) = V (s, r), by

the latter’s definition. So21

ε logE (τ(s, r, ε)) ≈ εlog σ + ε log T0 + V (s, r)→ V (s, r) (67)

Obviously, there are many steps here which would need to be made more precise in formal

proofs. Sometimes this requires appealing to detailed facts about the rate function or the

underlying process, but results of this form hold quite generally. One can also use such

methods to extract more detailed information about the distribution of the transition time

τ [Olivieri and Vares, 2005].

Notice that the time spent on the least-action trajectory from s to r, written T0 above,

just depends on the action function, and not on the noise level ε. The transition time

scales exponentially with ε essentially because, at low noise, the process spends a lot of time

wandering around the state s, before “finding” the path to r. Once embarked on that path,

however, the actual transition can be very rapid.

Applied to evolutionary processes, this observation suggests that once a population has

21It is important here that V (s, r) > 0, so that the transition wouldn’t happen in the absence of noise.
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come to the neighborhood of a local fitness maximum or selective, self-reinforcing equilib-

rium, it will spend a long time there before it moves to the vicinity of another equilibrium,

but the passage from one local maximum to another can be comparatively rapid. It was,

indeed, a whole generation ago that Newman et al. [1985] argued, on exactly this basis, that

“Neo-darwinian evolution implies puncutuated equilibria”. Interesting questions arise as to

whether such transitions happen primarily via crossing selectively-disfavored “barriers” or

on the contrary along selectively-neutral paths, and in the barrier-crossing case, whether

it is the height or the width of the barrier that determines the potential [van Nimwegen

and Crutchfield, 2000], but this is secondary, for our purposes, to the fact of metastability

[van Nimwegen et al., 1997]. Socially, of course, this is related to the proverbial way that

institutions can seem eternal, only to collapse with stunning rapidity.

A.2 Network Structure and Contagions

[[Placeholder: Yank the most math-y material from §??]]

Move most math-y material to App. A.2]]. Plainly put, human societies tend to be char-

acterized by gross asymmetries of power (although some societies are certainly more unequal

than others), which manifests itself in patterns of social connectedness. Some individuals

are highly influential - these individuals tend to be preferentially connected to each other,

forming a relatively tight cluster. The theoretical and empirical literature suggests that

this has important consequences for diffusion processes, since this cluster may be immensely

influential in determining which contagions spread across the network, and which die out.

This literature identifies three important ways in which gross network topology affects

contagion processes.First, the higher the average number of connections (social relationships

along which beliefs can be transmitted) between nodes (individuals), the faster diffusion will

be, and the less likely it will be to die out. Second, the higher the transitivity of the network

(the more likely that if nodes A and B are both connected to C that A and B will also

be connected to each other), the less likely it is that beliefs will spread across the network
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as a whole. Networks with high transitivity tend to consist of tightly connected clusters of

nodes, also called “communities” or “modules” which are much more weakly tied to other

clusters. Equally, once a belief has appeared within a given cluster, it is more likely to

spread and become established within that cluster.22.The first node in a cluster to adopt

the innovation, say A, finds many susceptible neighbors, and so initially the innovative

can spread rapidly. However, when a node B adopts the innovation from A, transitivity

implies that B’s neighbors are also likely to be A’s neighbors, and so no longer susceptible.

After a fairly short amount of time, there are few susceptible nodes left within the cluster,

and few links outside the cluster, so the innovation becomes, as it were, endemic but not

pandemic. Finally, the higher the variance in the number of links associated with particular

nodes (their “degree”), the easier it is for innovations to diffuse across the population. High

variance implies that some nodes will have especially large numbers of links to other nodes,

which may include non-local nodes. In networks with high variance in the number of links

between nodes (e.g. networks with scale-free or lognormal distributions of links) the most

linked nodes play a very important role in determining whether behaviors are disseminated

or not. 23

The action function not only reflects the mechanism of selection, but also the composition

22In fact, the most widely used methods for finding communities or clusters work by finding the borders
across which diffusion is inhibited: Newman, 2006, Lee and Wasserman, 2010 [[TODO: Cite Lerman]]

23Since (as discussed below) ties tend to form between nodes with similar attributes, it is always possible
that apparent diffusion across a social network is really due to similar individuals reacting similarly to a
common external cause [Sperber, 1996]. Disentangling this from contagion or social influence raises tricky
statistical issues, and often requires heroic assumptions [Shalizi and Thomas, 2011] #Cosma-add-cite-to-
your-new paper? . But no one disputes that social influence exists.

The common element of results across a very wide range of these models is that evolutionary processes obey
large deviations principles, under which the probability of a certain historical trajectory x(t) of strategies

in the population is roughly exponential, ≈ C exp
{
−ε−1

∫ T

t=0
L(x(t))dt

}
, the integral within the exponent

being the “action” (or relative difficulty; low action trajectories are relatively easy to find, while high action
trajectories are relatively hard) of the trajectory, and the scaling factor ε reflecting the noise level of the
evolutionary process. Put this in Appendix I? ε reflects the consequences of the mechanism of variation for
change across a given population. It grows with the frequency and magnitude of variations, and shrinks
with the population size (the larger the population, the more difficult it will be for a given variation to
spread across it).24 The action function reflects the consequences of the mechanism of selection — but also,
as already noted, the size of the selectively-neutral set of alternatives or “neutral network” that must be
explored before a transition to a higher-fitness state [van Nimwegen and Crutchfield, 2000].
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of the population of possible variations over which this mechanism selects. If there are many

selectively-neutral variations, and few selectively-superior variations, then it will take longer

on average to move to a higher fitness state than it would if there were fewer selectively-

neutral variations and more selectively superior ones. If there is little ‘noise’, so that new TODO:

replace

with

below

text and

move

to Ap-

pendix

I, inte-

grated

with

math.

The

large de-

viations

principle

implies

[Frei-

dlin and

Wentzell,

1998]

that the

typical

time it

takes a

popu-

lation

to move

from one

state x

to an-

other y is

propor-

tional to

exp {−V (x, y)/ε},

where

the “po-

tential”

V (x, y)

reflects

the cost

of the

least-

action

path

from one

state to

another.

This fur-

thermore

means

that

when the

rate of

variation

is low,

the time

needed

to move

the pop-

ulation

from one

state to

another

can be

expo-

nentially

long in

1/ε.

variations are produced slowly, change from one state to another can take a very long time

indeed.
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